Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.470
Filtrar
1.
Transfusion ; 64(4): 615-626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400625

RESUMO

BACKGROUND: Donor genetic variation is associated with red blood cell (RBC) storage integrity and post-transfusion recovery. Our previous large-scale genome-wide association study demonstrated that the African G6PD deficient A- variant (rs1050828, Val68Met) is associated with higher oxidative hemolysis after cold storage. Despite a high prevalence of X-linked G6PD mutation in African American population (>10%), blood donors are not routinely screened for G6PD status and its importance in transfusion medicine is relatively understudied. STUDY DESIGN AND METHODS: To further evaluate the functional effects of the G6PD A- mutation, we created a novel mouse model carrying this genetic variant using CRISPR-Cas9. We hypothesize that this humanized G6PD A- variant is associated with reduced G6PD activity with a consequent effect on RBC hemolytic propensity and post-transfusion recovery. RESULTS: G6PD A- RBCs had reduced G6PD protein with ~5% residual enzymatic activity. Significantly increased in vitro hemolysis induced by oxidative stressors was observed in fresh and stored G6PD A- RBCs, along with a lower GSH:GSSG ratio. However, no differences were observed in storage hemolysis, osmotic fragility, mechanical fragility, reticulocytes, and post-transfusion recovery. Interestingly, a 14% reduction of 24-h survival following irradiation was observed in G6PD A- RBCs compared to WT RBCs. Metabolomic assessment of stored G6PD A- RBCs revealed an impaired pentose phosphate pathway (PPP) with increased glycolytic flux, decreasing cellular antioxidant capacity. DISCUSSION: This novel mouse model of the common G6PD A- variant has impaired antioxidant capacity like humans and low G6PD activity may reduce survival of transfused RBCs when irradiation is performed.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Camundongos , Animais , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Hemólise , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Antioxidantes , Estudo de Associação Genômica Ampla , Eritrócitos/metabolismo , Doadores de Sangue
2.
Parasitol Int ; 100: 102868, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38387679

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) deficiency is one of the most common X-linked hereditary disorders worldwide. G6PD deficiency provides resistance against severe malaria, but paradoxically, G6PD deficiency is also a stumbling block in fighting against malaria. Primaquine (PQ), a drug for the radical cure of Plasmodium vivax, can cause lethal acute hemolytic anemia in malaria patients with inherited G6PD deficiency. In this study, we analyzed the phenotypic and genotypic G6PD deficiency status in 1721 individuals (963 males and 758 females) residing in three malaria-endemic areas within the Gia Lai province, Vietnam. The G6PD activity in individuals ranged from 3.04 to 47.82 U/g Hb, with the adjusted male median (AMM) of 7.89 U/g Hb. Based on the G6PD activity assay results, no phenotypic G6PD deficiency was detected. However, the multiplex polymerase chain reaction to detect G6PD variations in the gene level revealed that 26 individuals (7 males, 19 females) had Viangchan mutations (871 G > A). Sequencing analyses suggested that all the males were hemizygous Viangchan, whereas one was homozygous, and 18 were heterozygous Viangchan in females. These results suggested a relatively low prevalence of G6PD deficiency mutation rate (1.51%) in the minor ethnic populations residing in the Gia Lai province, Vietnam. However, considering these areas are high-risk malaria endemic, concern for proper and safe use of PQ as a radical cure of malaria is needed by combining a G6PD deficiency test before PQ prescription.


Assuntos
Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Malária , Feminino , Humanos , Masculino , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/uso terapêutico , Prevalência , Vietnã/epidemiologia , Primaquina/uso terapêutico , Malária/tratamento farmacológico , Malária Vivax/epidemiologia , Malária Vivax/tratamento farmacológico , Antimaláricos/efeitos adversos
3.
Malar J ; 23(1): 38, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308253

RESUMO

BACKGROUND: It was hypothesized that glucose-6-phosphate dehydrogenase (G6PD) deficiency confers a protective effect against malaria infection, however, safety concerns have been raised regarding haemolytic toxicity caused by radical cure with 8-aminoquinolines in G6PD-deficient individuals. Malaria elimination and control are also complicated by the high prevalence of G6PD deficiency in malaria-endemic areas. Hence, accurate identification of G6PD deficiency is required to identify those who are eligible for malaria treatment using 8-aminoquinolines. METHODS: The prevalence of G6PD deficiency among 408 Thai participants diagnosed with malaria by microscopy (71), and malaria-negative controls (337), was assessed using a phenotypic test based on water-soluble tetrazolium salts. High-resolution melting (HRM) curve analysis was developed from a previous study to enable the detection of 15 common missense, synonymous and intronic G6PD mutations in Asian populations. The identified mutations were subjected to biochemical and structural characterisation to understand the molecular mechanisms underlying enzyme deficiency. RESULTS: Based on phenotypic testing, the prevalence of G6PD deficiency (< 30% activity) was 6.13% (25/408) and intermediate deficiency (30-70% activity) was found in 15.20% (62/408) of participants. Several G6PD genotypes with newly discovered double missense variants were identified by HRM assays, including G6PD Gaohe + Viangchan, G6PD Valladolid + Viangchan and G6PD Canton + Viangchan. A significantly high frequency of synonymous (c.1311C>T) and intronic (c.1365-13T>C and c.486-34delT) mutations was detected with intermediate to normal enzyme activity. The double missense mutations were less catalytically active than their corresponding single missense mutations, resulting in severe enzyme deficiency. While the mutations had a minor effect on binding affinity, structural instability was a key contributor to the enzyme deficiency observed in G6PD-deficient individuals. CONCLUSIONS: With varying degrees of enzyme deficiency, G6PD genotyping can be used as a complement to phenotypic screening to identify those who are eligible for 8-aminoquinolines. The information gained from this study could be useful for management and treatment of malaria, as well as for the prevention of unanticipated reactions to certain medications and foods in the studied population.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Malária , Humanos , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Tailândia/epidemiologia , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/análise , Malária/epidemiologia , Aminoquinolinas/efeitos adversos
4.
PeerJ ; 12: e16554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188142

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) is a the first and rate-limiting enzyme that plays a critical role in G6PD deficiency, the most common enzyme disorder worldwide, is related to intravascular hemolysis. To determine the clinical enzyme activity level in different G6PD variants, we evaluated 15 variant from 424 clinical blood samples by using multicolor melting curve analysis and DNA sequencing. The results showed that the enzyme activities of the hemizygous deficient were 1.5-2.4 U/gHb, which was significantly lower than those of the heterozygous (P < 0.001) and the compound heterozygous variants (P < 0.05). Since the hemizygous of c.1024C > T (Chinese-5) mutation affects the kinetic parameters of G6PD and increase utilization of analogues, its enzyme activity is more than those of other mutations that mutated in the ß+α region of G6PD. The heterozygous enzyme levels ranged from 6.5-20.1 U/gHb; and there was no significant difference among different heterozygous variants (P > 0.05). The enzyme activity levels of the compound heterozygous mutation were mainly in the range of 1.7-3.8 U/gHb, which was much lower than that of the heterozygous mutation (P < 0.001). In summary, our findings revealed that the enzyme activity of G6PD in blood have a significant relationship with genotype of G6PD.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Humanos , Genótipo , Deficiência de Glucosefosfato Desidrogenase/genética , Testes Hematológicos
5.
Ann Hematol ; 103(1): 29-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971548

RESUMO

OBJECTIVES: This study aimed to investigate the incidence rate and spectrum of gene mutations of Glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Huizhou city of southern China to provide a scientific basis for disease prevention and control in the area. METHODS: From March 2003 to December 2022, newborn screening for G6PD enzyme activity was carried out in Huizhou city using the fluorescence quantitative method. Infants who tested positive during the initial screening were diagnosed using the nitroblue tetrazolium ratio method, while a subset of infants received further gene mutation analysis using the multicolor probe melting curve analysis method. RESULTS: A total of 1,291,274 newborns were screened and the screening rate has increased from 20.39% to almost 100%. In the 20-year period, 57,217 (4.43%) infants testing positive during the initial screening. Out of these infants, 49,779 (87%) were recalled for confirmatory testing. G6PD deficiency was confirmed in 39,261 of the recalled infants, indicating a positive predictive value of 78.87%. The estimated incidence rate of G6PD deficiency in the region was 3.49%, which was significantly higher than the average incidence rate of 2.1% in southern China. On the other hand, seven pathogenic G6PD variants were identified in the analysis of the 99 diagnosed infants with the most common being c.1388 G > A (48.5%), followed by c.95 A > G (19.2%), c.1376 G > T (15.2%), c.871 G > A (9.1%), c.1360 C > T (3.0%), c.392 G > T (3.0%), and c.487 G > A (1.0%). CONCLUSION: The incidence of G6PD deficiency in newborns in the Huizhou city was higher than the southern China average level, while the types and frequencies of gene mutations were found to vary slightly from other regions. Our findings suggested that free government screening and nearby diagnosis strategies could reduce the incidence of G6PD deficiency in the area.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Lactente , Humanos , Recém-Nascido , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Taxa de Mutação , Glucosefosfato Desidrogenase/genética , Mutação , Triagem Neonatal , China/epidemiologia
7.
Malar J ; 22(1): 372, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062464

RESUMO

BACKGROUND: The use of primaquine for mass drug administration (MDA) is being considered as a key strategy for malaria elimination. In addition to being the only drug active against the dormant and relapsing forms of Plasmodium vivax, primaquine is the sole potent drug against mature/infectious Plasmodium falciparum gametocytes. It may prevent onward transmission and help contain the spread of artemisinin resistance. However, higher dose of primaquine is associated with the risk of acute haemolytic anaemia in individuals with a deficiency in glucose-6-phosphate dehydrogenase. In many P. falciparum endemic areas there is paucity of information about the distribution of individuals at risk of primaquine-induced haemolysis at higher dose 45 mg of primaquine. METHODS: A retrospective cross-sectional study was carried out using archived samples to establish the prevalence of G6PD deficiency in a malaria hotspot area in Misungwi district, located in Mwanza region, Tanzania. Blood samples collected from individuals recruited between August and November 2010 were genotyped for G6PD deficiency and submicroscopic parasites carriage using polymerase chain reaction. RESULTS: A total of 263 individuals aged between 0 and 87 were recruited. The overall prevalence of the X-linked G6PD A- mutation was 83.7% (220/263) wild type, 8% (21/263) heterozygous and 8.4% (22/263) homozygous or hemizygous. Although, assessment of the enzymatic activity to assign the phenotypes according to severity and clinical manifestation as per WHO was not carried out, the overall genotype and allele frequency for the G6PD deficiency was 16.4% and 13. 2%, respectively. There was no statistically significant difference in among the different G6PD genotypes (p > 0.05). Out of 248 samples analysed for submicroscopic parasites carriage, 58.1% (144/248) were P. falciparum positive by PCR. G6PD heterozygous deficiency were associated with carriage of submicroscopic P. falciparum (p = 0.029). CONCLUSIONS: This study showed that 16.4% of the population in this part of North-western Tanzania carry the G6PD A- mutation, within the range of 15-32% seen in other parts of Africa. G6PD gene mutation is widespread and heterogeneous across the study area where primaquine would be valuable for malaria control and elimination. The maps and population estimates presented here reflect potential risk of higher dose of primaquine being associated with the risk of acute haemolytic anaemia (AHA) in individuals with a deficiency in glucose-6-phosphate dehydrogenase and call further research on mapping of G6PD deficiency in Tanzania. Therefore, screening and education programmes for G6PD deficiency is warranted in a programme of malaria elimination using a higher primaquine dose.


Assuntos
Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Malária Falciparum , Malária Vivax , Malária , Parasitos , Humanos , Animais , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Primaquina/efeitos adversos , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Antimaláricos/uso terapêutico , Glucosefosfato Desidrogenase/genética , Tanzânia/epidemiologia , Prevalência , Estudos Transversais , Estudos Retrospectivos , Malária/tratamento farmacológico , Malária Falciparum/prevenção & controle , Hemólise , Malária Vivax/epidemiologia , Malária Vivax/tratamento farmacológico
8.
PLoS One ; 18(12): e0294891, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38085718

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked genetic disorder characterized by reduced G6PD enzyme levels in the blood. This condition is common in populations exposed to malaria; an acute febrile disease caused by Plasmodium parasites. G6PD-deficient individuals may suffer from acute hemolysis following the prescription of Primaquine, an antimalarial treatment. The population at risk for such a condition includes the Senoi group of Orang Asli, a remote indigenous community in Malaysia. This study aimed to elucidate the G6PD molecular heterogeneity in this subethnic group which is important for malaria elimination. A total of 662 blood samples (369 males and 293 females) from the Senoi subethnic group were screened for G6PD deficiency using a quantitative G6PD assay, OSMMR2000-D kit with Hb normalization. After excluding the family members, the overall prevalence of G6PD deficiency in the studied population was 15.2% (95% CI: 11-19%; 56 of 369), with males (30 of 172; 17.4%) outnumbering females (26 of 197; 13.2%). The adjusted male median (AMM), defined as 100% G6PD activity, was 11.8 IU/gHb. A total of 36 participants (9.6%; 26 male and 10 female) were deficient (<30% of AMM) and 20 participants (5.4%; 4 male and 16 female) were G6PD-intermediate (30-70% of AMM). A total of 87 samples were genotyped, of which 18 showed no mutation. Seven mutations were found among 69 genotyped samples; IVS11 T93C (47.1%; n = 41), rs1050757 (3'UTR +357A>G)(39.1%; n = 34), G6PD Viangchan (c.871G>A)(25.3%; n = 22), G6PD Union (c.1360C>T)(21.8%; n = 19), c.1311C>T(20.7%; n = 18), G6PD Kaiping (c.1388G>A)(8.0%; n = 7), and G6PD Coimbra (c.592C>T)(2.3%; n = 2). Our analysis revealed 27 hemizygote males, 18 heterozygote females, 7 homozygote females, and 2 compound heterozygote females. This study confirms the high prevalence of G6PD deficiency among the Senoi Malaysian Orang Asli, with a significant degree of molecular heterogeneity. More emphasis should be placed on screening for G6PD status and proper and safe use of Primaquine in the elimination of malaria among this indigenous population.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Malária , Feminino , Humanos , Masculino , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/análise , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Malária/epidemiologia , Malásia/epidemiologia , Prevalência , Primaquina/efeitos adversos
9.
Commun Biol ; 6(1): 1245, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066190

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common enzymopathies in humans, present in approximately half a billion people worldwide. More than 230 clinically relevant G6PD mutations of different classes have been reported to date. We hereby describe a patient with chronic hemolysis who presents a substitution of arginine by glycine at position 219 in G6PD protein. The variant was never described in an original publication or characterized on a molecular level. In the present study, we provide structural and biochemical evidence for the molecular basis of its pathogenicity. When compared to the wild-type enzyme, the Arg219Gly mutation markedly reduces the catalytic activity by 50-fold while having a negligible effect on substrate binding affinity. The mutation preserves secondary protein structure, but greatly decreases stability at higher temperatures and to trypsin digestion. Size exclusion chromatography elution profiles show monomeric and dimeric forms for the mutant, but only the latter for the wild-type form, suggesting a critical role of arginine 219 in G6PD dimer formation. Our findings have implications in the development of small molecule activators, with the goal of rescuing the phenotype observed in this and possibly other related mutants.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Dimerização , Glicina/genética , Glicina/metabolismo , Deficiência de Glucosefosfato Desidrogenase/genética , Mutação
10.
PLoS One ; 18(11): e0294200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967096

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked enzymopathy caused by mutations in the G6PD gene. A medical concern associated with G6PD deficiency is acute hemolytic anemia induced by certain foods, drugs, and infections. Although phenotypic tests can correctly identify hemizygous males, as well as homozygous and compound heterozygous females, heterozygous females with a wide range of G6PD activity may be misclassified as normal. This study aimed to develop multiplex high-resolution melting (HRM) analyses to enable the accurate detection of G6PD mutations, especially among females with heterozygous deficiency. Multiplex HRM assays were developed to detect six G6PD variants, i.e., G6PD Gaohe (c.95A>G), G6PD Chinese-4 (c.392G>T), G6PD Mahidol (c.487G>A), G6PD Viangchan (c.871G>A), G6PD Chinese-5 (c.1024C>T), and G6PD Union (c.1360C>T) in two reactions. The assays were validated and then applied to genotype G6PD mutations in 248 Thai females. The sensitivity of the HRM assays developed was 100% [95% confidence interval (CI): 94.40%-100%] with a specificity of 100% (95% CI: 88.78%-100%) for detecting these six mutations. The prevalence of G6PD deficiency was estimated as 3.63% (9/248) for G6PD deficiency and 31.05% (77/248) for intermediate deficiency by phenotypic assay. The developed HRM assays identified three participants with normal enzyme activity as heterozygous for G6PD Viangchan. Interestingly, a deletion in intron 5 nucleotide position 637/638 (c.486-34delT) was also detected by the developed HRM assays. G6PD genotyping revealed a total of 12 G6PD genotypes, with a high prevalence of intronic variants. Our results suggested that HRM analysis-based genotyping is a simple and reliable approach for detecting G6PD mutations, and could be used to prevent the misdiagnosis of heterozygous females by phenotypic assay. This study also sheds light on the possibility of overlooking intronic variants, which could affect G6PD expression and contribute to enzyme deficiency.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Feminino , Humanos , Genótipo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Mutação , População do Sudeste Asiático
11.
Front Biosci (Schol Ed) ; 15(3): 11, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37806950

RESUMO

BACKGROUND: Glucose-6-phosphate-dehydrogenase (G6PD) deficiency is the most frequent enzymopathy worldwide; it is a genetic disorder that affects red blood cells and causes hemolysis. Here, we conducted a study on G6PD-deficient subjects in Mauritania to evaluate the molecular characteristics associated with a deficiency in this enzyme and the frequency of nucleotide polymorphisms in the glucose-6-phosphate dehydrogenase gene. METHOD AND MATERIALS: A total of 943 blood samples were collected from blood donors (803 males and 140 females; 364 white Moors; 439 black Moors; 112 Pulaar; 18 Wolof; 10 Soninke). All blood samples were analyzed using a rapid screening test. G6PD status was analyzed quantitatively by the Randox G6PD test. Samples deficient in G6PD were extracted from the whole blood samples and subjected to DNA genotyping. The most frequent G6PD variants were determined by two molecular techniques: restriction fragment length polymorphism (RFLP) and multiplex PCR using the GENESPARK G6PD African kit. A total of six single nucleotide polymorphisms (SNPs) (G202A, A376G, A542T, G680T, C563T, and T968C) were identified. RESULTS: The prevalence of G6PD deficiency in this population sample was 8.1%. The most common mutation was A376G/202A and was characterized by the G6PD A-phenotype, which is more common in the G6PD-deficient black Moors population. The wilaya in Nouakchott was the most affected among the 13 wilayas studied. CONCLUSIONS: This study shows, for the first time, the presence of the G680T mutation.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Masculino , Feminino , Humanos , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Mauritânia , Doadores de Sangue , Etnicidade , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Eritrócitos
12.
PLoS Negl Trop Dis ; 17(9): e0011522, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672548

RESUMO

BACKGROUND: The World Health Organization recommends that primaquine should be given once weekly for 8-weeks to patients with Plasmodium vivax malaria and glucose-6-phosphate dehydrogenase (G6PD) deficiency, but data on its antirelapse efficacy and safety are limited. METHODS: Within the context of a multicentre, randomised clinical trial of two primaquine regimens in P. vivax malaria, patients with G6PD deficiency were excluded and enrolled into a separate 12-month observational study. They were treated with a weekly dose of 0.75 mg/kg primaquine for 8 weeks (PQ8W) plus dihydroartemisinin piperaquine (Indonesia) or chloroquine (Afghanistan, Ethiopia, Vietnam). G6PD status was diagnosed using the fluorescent spot test and confirmed by genotyping for locally prevalent G6PD variants. The risk of P. vivax recurrence following PQ8W and the consequent haematological recovery were characterized in all patients and in patients with genotypically confirmed G6PD variants, and compared with the patients enrolled in the main randomised control trial. RESULTS: Between July 2014 and November 2017, 42 male and 8 female patients were enrolled in Afghanistan (6), Ethiopia (5), Indonesia (19), and Vietnam (20). G6PD deficiency was confirmed by genotyping in 31 patients: Viangchan (14), Mediterranean (4), 357A-G (3), Canton (2), Kaiping (2), and one each for A-, Chatham, Gaohe, Ludhiana, Orissa, and Vanua Lava. Two patients had recurrent P. vivax parasitaemia (days 68 and 207). The overall 12-month cumulative risk of recurrent P. vivax malaria was 5.1% (95% CI: 1.3-18.9) and the incidence rate of recurrence was 46.8 per 1000 person-years (95% CI: 11.7-187.1). The risk of P. vivax recurrence was lower in G6PD deficient patients treated with PQ8W compared to G6PD normal patients in all treatment arms of the randomised controlled trial. Two of the 26 confirmed hemizygous males had a significant fall in haemoglobin (>5g/dl) after the first dose but were able to complete their 8 week regimen. CONCLUSIONS: PQ8W was highly effective in preventing P. vivax recurrences. Whilst PQ8W was well tolerated in most patients across a range of different G6PD variants, significant falls in haemoglobin may occur after the first dose and require clinical monitoring. TRIAL REGISTRATION: This trial is registered at ClinicalTrials.gov (NCT01814683).


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Humanos , Feminino , Masculino , Primaquina/uso terapêutico , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/genética , Malária Vivax/tratamento farmacológico , Afeganistão , Bioensaio
13.
J Genet ; 1022023.
Artigo em Inglês | MEDLINE | ID: mdl-37674284

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked disorder with well-established clinical and allelic heterogeneity and ethnic disparity. With ~390,000 annual births with G6PD deficiency in India, it emerges as the most predictable and preventable inbornmetabolic error. Disease prevalence and mutation spectrum have been reasonably reported fromcentral, western and southern parts of India and are mostly retrospective studies.Although prevalence data fromnorth India is available, there is paucity of data on the mutation spectrum and genotype-phenotype correlation (GxP). Thus, we aimed at establishing the clinical and mutation profiles for G6PD, as a part of a large prospective newborn screening study conducted between 2014 and 2016 across hospitals in Delhi, India. G6PD activity levels were measured at 24-48 h of life for ~200,000 neonates using Victor 2D and/or Genomic Screening Processor followed by confirmatory spectrophotometric analysis usingRBClysates of the respective neonates based on clinical symptoms.Asubset of 570 enzyme deficient neonates were screened formutations by polymerase chain reaction-restriction fragment length polymorphismand/or Sanger sequencing.Mediterraneanwas the most common mutation (n=318; 55.8%) with the lowest enzyme activity and most severe phenotype, followed by G6PD Orissa (n=187;32.8%); Kerala-Kalyan (n=25); Jammu (n=24);Mahidol (n=14); Chattam(n=1) andNilgiri/Coimbra (n=1).Of the 163 intramural neonates followed up, 68 developed clinical jaundice. However, no correlation was observed between jaundice and enzyme level. Notable outcome of this first ever prospective screening approach for G6PD deficiency in neonates may help in prediction of disease severity and appropriate timely management.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Humanos , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Estudos Prospectivos , Estudos Retrospectivos , Índia/epidemiologia , Mutação
14.
Malar J ; 22(1): 283, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752491

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is an X-linked disorder affecting over 400 million people worldwide. Individuals with molecular variants associated with reduced enzymatic activity are susceptible to oxidative stress in red blood cells, thereby increasing the risk of pathophysiological conditions and toxicity to anti-malarial treatments. Globally, the prevalence of G6PDd varies among populations. Accordingly, this study aims to characterize G6PDd distribution within the Ecuadorian population and to describe the spatial distribution of reported malaria cases. METHODS: Molecular variants associated with G6PDd were genotyped in 581 individuals from Afro-Ecuadorian, Indigenous, Mestizo, and Montubio ethnic groups. Additionally, spatial analysis was conducted to identify significant malaria clusters with high incidence rates across Ecuador, using data collected from 2010 to 2021. RESULTS: The A- c.202G > A and A- c.968T > C variants underpin the genetic basis of G6PDd in the studied population. The overall prevalence of G6PDd was 4.6% in the entire population. However, this frequency increased to 19.2% among Afro-Ecuadorian people. Spatial analysis revealed 12 malaria clusters, primarily located in the north of the country and its Amazon region, with relative risks of infection of 2.02 to 87.88. CONCLUSIONS: The findings of this study hold significant implications for public health interventions, treatment strategies, and targeted efforts to mitigate the burden of malaria in Ecuador. The high prevalence of G6PDd among Afro-Ecuadorian groups in the northern endemic areas necessitates the development of comprehensive malaria eradication strategies tailored to this geographical region.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Malária , Humanos , Equador/epidemiologia , Eritrócitos , Etnicidade , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Malária/epidemiologia
15.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628871

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, affecting an estimated 500 million people worldwide, is a genetic disorder that causes human enzymopathies. Biochemical and genetic studies have identified several variants that produce different ranges of phenotypes; thus, depending on its severity, this enzymopathy is classified from the mildest (Class IV) to the most severe (Class I). Therefore, understanding the correlation between the mutation sites of G6PD and the resulting phenotype greatly enhances the current knowledge of enzymopathies' phenotypic and genotypic heterogeneity, which will assist both clinical diagnoses and personalized treatments for patients with G6PD deficiency. In this review, we analyzed and compared the structural and functional data from 21 characterized G6PD variants found in the Mexican population that we previously characterized. In order to contribute to the knowledge regarding the function and structure of the variants associated with G6PD deficiency, this review aimed to determine the molecular basis of G6PD and identify how these mutations could impact the structure, stability, and function of the enzyme and its relation with the clinical manifestations of this disease.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/genética , Genótipo , Mutação , Fenótipo
16.
Br J Haematol ; 202(5): 1024-1032, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37415281

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X-linked G6PD gene has been studied extensively: allele frequencies of up to 25% of different G6PD deficient variants are known in many populations; variants that cause chronic non-spherocytic haemolytic anaemia (CNSHA) are instead all rare. WHO recommends G6PD testing to guide 8-aminoquinolines administration to prevent relapse of Plasmodium vivax infection. From a literature review focused on polymorphic G6PD variants we have retrieved G6PD activity values of 2291 males, and for the mean residual red cell G6PD activity of 16 common variants we have obtained reliable estimates, that range from 1.9% to 33%. There is variation in different datasets: for most variants most G6PD deficient males have a G6PD activity below 30% of normal. There is a direct relationship between residual G6PD activity and substrate affinity (Km G6P ), suggesting a mechanism whereby polymorphic G6PD deficient variants do not entail CNSHA. Extensive overlap in G6PD activity values of individuals with different variants, and no clustering of mean values above or below 10% support the merger of class II and class III variants.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Masculino , Recém-Nascido , Humanos , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , Eritrócitos , Polimorfismo Genético , Hemólise , Organização Mundial da Saúde
17.
Comput Biol Chem ; 104: 107873, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37141793

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect that affects more than 500 million people worldwide. Individuals affected with G6PD deficiency may occasionally suffer mild-to-severe chronic hemolytic anemia. Chronic non-spherocytic hemolytic anemia (CNSHA) is a potential result of the Class I G6PD variants. This comparative computational study attempted to correct the defect in variants structure by docking the AG1 molecule to selected Class I G6PD variants [G6PDNashville (Arg393His), G6PDAlhambra (Val394Leu), and G6PDDurham (Lys238Arg)] at the dimer interface and structural NADP+ binding site. It was followed by an analysis of the enzyme conformations before and after binding to the AG1 molecule using the molecular dynamics simulation (MDS) approach, while the severity of CNSHA was determined via root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), hydrogen bonds, salt bridges, radius of gyration (Rg), solvent accessible surface area analysis (SASA), and principal component analysis (PCA). The results revealed that G6PDNashville (Arg393His) and G6PDDurham (Lys238Arg) had lost the direct contact with structural NADP+ and salt bridges at Glu419 - Arg427 and Glu206 - Lys407 were disrupted in all selected variants. Furthermore, the AG1 molecule re-stabilized the enzyme structure by restoring the missing interactions. Bioinformatics approaches were also used to conduct a detailed structural analysis of the G6PD enzyme at a molecular level to understand the implications of these variants toward enzyme function. Our findings suggest that despite the lack of treatment for G6PDD to date, AG1 remains a novel molecule that promotes activation in a variety of G6PD variants.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Sítios de Ligação , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/genética , NADP/metabolismo
18.
Hum Genomics ; 17(1): 26, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949502

RESUMO

BACKGROUND: G6PD deficiency is a common inherited disorder worldwide and has a higher incidence rate in southern China. Many variants of G6PD result from point mutations in the G6PD gene, leading to decreased enzyme activity. This study aimed to analyse the genotypic and phenotypic characteristics of G6PD deficiency in Guangzhou, China. METHODS: In this study, a total of 20,208 unrelated participants were screened from 2020 to 2022. G6PD deficiency was further analysed by quantitative enzymatic assay and G6PD mutation analysis. The unidentified genotype of the participants was further ascertained by direct DNA sequencing. RESULTS: A total of 12 G6PD mutations were identified. Canton (c.1376G>T) and Kaiping (c.1388G>A) were the most common variants, and different mutations led to varying levels of G6PD enzyme activity. Comparing the enzyme activities of the 6 missense mutations between the sexes, we found significant differences (P < 0.05) in the enzyme activities of both male hemizygotes and female heterozygotes. Two previously unreported mutations (c.1438A>T and c.946G>A) were identified. CONCLUSIONS: This study provided detailed genotypes of G6PD deficiency in Guangzhou, which could be valuable for diagnosing and researching G6PD deficiency in this area.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Feminino , Humanos , Masculino , China/epidemiologia , Genótipo , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Heterozigoto , Mutação
19.
Exp Hematol ; 121: 18-29.e2, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801436

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency impairs cellular processes under oxidative stress. Individuals with severe G6PD deficiency still produce sufficient numbers of erythrocytes. Nevertheless, the G6PD independence of erythropoiesis remains questionable. This study elucidates the effects of G6PD deficiency on the generation of human erythrocytes. Peripheral blood-derived CD34-positive hematopoietic stem and progenitor cells (HSPCs) of human subjects with normal, moderate, and severe G6PD activities were cultured in two distinct phases: erythroid commitment and terminal differentiation. Regardless of G6PD deficiency, HSPCs were able to proliferate and differentiate into mature erythrocytes. There was no impairment in erythroid enucleation among the subjects with G6PD deficiency. To our knowledge, this study is the first report of effective erythropoiesis independent of G6PD deficiency. The evidence firmly indicates that the population with the G6PD variant could produce erythrocytes to an extent similar to that in healthy individuals.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Diferenciação Celular , Eritrócitos , Eritropoese , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/genética
20.
Am J Trop Med Hyg ; 108(3): 470-476, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746659

RESUMO

Malaria remains an important public health problem despite efforts to control it. Besides active transmission, relapsing malaria caused by dormant liver stages of Plasmodium vivax and Plasmodium ovale hypnozoites is a major hurdle in malaria control and elimination programs. Primaquine (PQ) is the most widely used drug for radical cure of malaria. Due to its anti-hypnozoite and gametocidal activity, PQ plays a key role in malaria relapse and transmission. The human enzyme glucose-6-phosphate dehydrogenase (G6PD) is crucial in determining the safety of PQ because G6PD-deficient individuals are prone to hemolysis if treated with PQ. Therefore, there is a need to study the prevalence of G6PD-deficient genetic variants in endemic populations to assess the risk of PQ treatment and the necessity to develop alternative treatments. In this work, we discuss the common G6PD variants, their varying enzymatic activity, and their distribution on the three-dimensional structure of G6PD. Our work highlights the important G6PD variants and the need for large-scale G6PD gene polymorphism studies to predict populations at risk of PQ-induced toxicity.


Assuntos
Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Malária , Humanos , Primaquina/uso terapêutico , Antimaláricos/uso terapêutico , Glucosefosfato Desidrogenase/genética , Polimorfismo de Nucleotídeo Único , Malária/tratamento farmacológico , Deficiência de Glucosefosfato Desidrogenase/genética , Malária Vivax/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...